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1  INTRO DUCTION  

"Analyses based on S1 tend to produce better 
portfolios than those based on V. Variance 
considers extremely high and extremely low 
returns equally undesirable. An analysis based on 
V seeks to eliminate both extremes. An analysis 
based on SE, on the other hand, concentrates on 
reducing losses." (Markowitz, 1959, p. 194)  

To minimize a portfolio's volatility, one usually 
optimizes the variance-covariance matrix of the 
stock returns in question. Doing so, one considers 
both negative and positive deviations from the 
mean returns equally. However, investors are 
interested in minimizing negative returns. A more 
appropriate risk measure, therefore, should only 
consider returns that fall below a certain 
threshold. In 1959, Markowitz already suggests 
the semi-variance as a smart alternative to the 
variance. The square-root of the semi-variance, 
called downside volatility, measures the 
volatility of returns below that threshold.  

Consider, for example, two portfolios realizing 
the following sets of returns: A = [-0.1 ⎸-0.1 ⎸-0.1] 
and B = [0.02 ⎸0.1 ⎸0.03]. The respective 
volatilities are 0 and 0.04, i.e. portfolio A is 
considered the less risky investment by the 
classic standard deviation framework. The 
downside volatility, on the other hand, suggests 
that portfolio B is the less risky investment, as 
the resulting downside volatilities are 0.1 and 0, 
respectively. This result is more in line with what 
a typical investor would prefer.  

In other words, the downside volatility produces 
more consistent risk figures. To minimize a 
portfolio's risk in terms of downside volatility, we 
calculate the semi-covariance matrix of asset 
returns as introduced by Estrada (2008). Using 
this heuristic definition, we can optimize the 
semi-covariance matrix and find a closed form 
solution that minimizes the downside volatility of 

the portfolio. As a result, we obtain an index that 
has minimum risk, defined in a more intuitive way. 
The remainder of this paper focuses on the 
application of the MDV strategy on US large caps 
and is organized as follows. In section 2 the 
theory behind the optimization is introduced. 
Section 3 contains analytics on the Solactive US 
Large Cap and the Solactive US Large Minimum 
Downside Volatility Index. Section 4 concludes. 

2  THEORY  

To find the weights that minimize the portfolio's 
downside volatility we solve the following 
optimization problem: 

min(𝜔′ ∙ Σ ∙  𝜔) 
Equation (1) 

where w is a vector of weights. The semi-
covariance matrix ∑ is defined as, 

∑ 𝑖𝑗𝐵 =
1

𝑇
∙ ∑[ Min(𝑅𝑖,𝑡 − 𝐵, 0)

𝑇

𝑡=1

∙ Min(𝑅𝑗,𝑡 − 𝐵, 0) ] 

Equation (2) 

where 𝑇 is the number of observations, Ri,t is the 
return of asset 𝑖 at time 𝑡, and 𝐵 is the threshold 
return. For our indices, we set 𝐵 equal to zero, i.e. 
we are minimizing risk defined as volatility of 
negative returns. The optimization is solved 
subject to a set of constraints. First, the sum of 
weights of all index members must be equal to 
one.  

∑ 𝜔𝑖 = 1

𝑛

𝑖=1

 

Equation (3) 

Secondly, we fix the number of final index 
members, 𝑁. This is implemented by Equations 

(4) and (5). 

∑ 𝑦𝑖 = N

𝑛

𝑖=1

 

Equation (4) 
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 𝑦𝑖 ∈ {0,1} 𝑖 = 1, … , 𝑛 

Equation (5) 

The latter assigns each stock either a value of 
one when it is included in the index or a zero 
otherwise. The former makes sure that the sum 
over these Boolean values equals the specified 
number of index components. Further, we 
introduce an upper and lower bound for the 
individual stock weight. 

𝜔𝑖
𝑚𝑖𝑛 ≤  𝜔𝑖  ≤  𝜔𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑛 
Equation (6) 

Equation (7) limits the weight that can be 
invested in a certain sector relative to the sector 

allocation of the benchmark by setting individual 
upper and lower sector bounds, 𝑠𝑗 . 

𝑠𝑗
𝑚𝑖𝑛 ≤ ∑ 𝑤𝑖

𝑛

𝑖∈𝑠(𝑗)

≤ 𝑠𝑗
𝑚𝑎𝑥  

Equation (7) 

Where 𝑠𝑗  denotes the set of stocks that are 
included in sector 𝑗. A similar requirement can be 
implemented for the country allocation: 

𝑐𝑘
𝑚𝑖𝑛 ≤ ∑ 𝑤𝑖

𝑛

𝑖∈𝐶(𝑘)

≤ 𝐶𝑘
𝑚𝑎𝑥  

Equation (8) 

where 𝑐𝑘  are all stocks that are part of country 
𝑘. The maximum one-way turnover (OWT) 
constraint is implemented as in Equation (9): 

1

2
∙ ∑ ∣ 𝑤𝑖,𝑡

𝑛

𝑖=1

− 𝑤𝑖,𝑡−1 ∣≤ 𝑂𝑊𝑇 

Equation (9) 

A problem often encountered when estimating 
the (semi-)covariance matrix is the curse 

of dimensionality, i.e. we typically have a large 
number of stocks available but comparatively 
few observations. As a result, the semi-
covariance matrix would be estimated with large 

estimation errors. This would deteriorate the out-
of-sample performance of our resulting portfolio. 
Common remedies to this problem are the usage 
of factor models or shrinkage (compare Ledoit 
and Wolf, 2004) [Ref. 5] to estimate the (semi-) 
covariance. However, as shown e.g. by 
Jagannathan and Ma (2003) [Ref. 4] or Frost and 
Savarino (1988) [Ref. 2], imposing a no-shortsales 
constraint into the optimization problem leads to 
portfolios that perform as well as portfolios that 
use factor models or shrinkage when estimating 
the (semi-)covariance. In fact, they also show that 
introducing a no-shortsales constraint when 
using factor models or shrinkage for estimation 
even hurts the out-of-sample performance of the 
resulting portfolios. Therefore, as we do not 
allow short-selling in our index we refrain from 
using factor models or shrinkage when 
estimating the semi-covariance matrix. 

To solve the above optimization, we use the 
Outer-Approximation Algorithm as described in 
Hemmecke et al. (2010) [Ref. 3]. In the first step 
we solve the quadratic programming problem of 
the form 

𝑚𝑖𝑛

𝑥
 
1

2
∙  𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 such that {

𝐴 ∙ 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞,
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

 

The second step solves the linear programming 
problem, 

𝑚𝑖𝑛

𝑥
 𝑓𝑇𝑥 such that {

𝐴 ∙ 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞,
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

 

Both problems are solved using interior-point 
algorithms.  

3 IN DEX ANALY TI CS  

This section presents results of a historical 
simulation (backtest) of the Solactive US Large 
Cap Minimum Downside Volatility Index (SOL US 
LC MDV) starting in February 2004. We compare 
it to the starting universe, which is represented 
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by the float market cap weighted Solactive US 
Large Cap. Figure (1)  displays the results. Table (1) 
displays the detailed statistics. 

 
Figure (1): Backtest Results 

 
Table (1): Backtest Results (annualized) 

The following parameters have been used for 
calculation of the backtest of the SOL US LC 
MDV. 

Starting Universe: Solactive US Large Cap Index 

Index Currency: USD 

Index Type: Gross Total Return 

Minimum Stock Weight: 0.15% 

Maximum Stock Weight: 3.00% 

Number of Stocks: 100 

Minimum 6-month ADV: $ 10 million 

Relative Sector Capping: ± 2.50 percentage points 
(relative to starting universe) 

Maximum One-Way Turnover: 10.00 percentage 
points 

The first thing to notice is that the downside 
volatility of our approach is substantially lower 
than the one of the SOL US LC. This reflects the 
success of our optimization routine. As a 
consequence, the risk-adjusted returns, as 

illustrated by the Sharpe- and Sortino-Ratio, are 
distinctly higher. Further, our realized maximum 
drawdown is significantly reduced, which is also 
a result of the risk minimization. The ratio of the 
SOL US LC MDV against the SOL US LC approach, 
shown in Figure (2), increases especially in 
turmoil periods. Note, for instance, how the ratio 
starts to rise in 2007 when the subprime 
mortgage crisis began. 

 
Figure (2): Ratio SOL US LC MDV Index over SOL US LC Index 

Moreover, Figure (3) shows that the strategy does 
not only work in extreme market conditions, but 
also during more modest bear markets.  

 
Figure (3): Scatterplot of SOL US LC MDV against SOL US LC 

This becomes obvious as most of the negative 
returns are located above the 45° line indicating 
a higher return of the SOL US LC MDV compared 
to the SOL US LC. 

The sector allocation shown in Figure (4) exhibits 
that as of the most recent selection the largest 
parts are invested in Financials, Information 
Technology and Consumer Staples. During the 
backtesting period sectors like Utilities, 
Consumer Staples or Real Estate were typically 
among the most prominent ones. 
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This is shown in Figure (5) which illustrates the 
difference in the sector allocation of the SOL US 
LC MDV in comparison to the SOL US LC. It can be 
observed that the strategy avoids excessive 
sector tilts and tracks the allocation of its 
benchmark closely. 

 
Figure 4: Historic Sector Allocation (%) 

 
Figure (5): Relative Sector Allocation of the SOL US LC MDV against the 

SOL US LC (%)) 

 
Figure 6: Historic Turnover of the SOL US LC MDV (%) 

Figure (6) furthermore shows that the turnover 
constraint has been achieved at every selection 
day, leaving the historical one-way turnover at 
roughly 20% per annum.esearch@solactive.com 

4  CON CLUSION   

We introduce a new approach of risk 
minimization in the index context. While standard 
deviation, as used in classic portfolio theory, 
punishes positive and negative deviations from 
mean returns equally, the downside volatility 

only considers negative returns when calculating 
an asset's risk. By optimizing our starting 
universe according to downside volatility, we 
manage to create a new index that has minimum 
risk and superior performance figures. In other 
words, the Solactive US Large Cap Minimum 
Downside Volatility Index generates lower 
downside volatilities, lower maximum 
drawdowns, and higher risk-adjusted returns 
compared to classical volatility optimized 
indices. 
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DISCLAIMER 

Solactive AG does not offer any explicit or implicit guarantee or assurance either with regard to the results of using an Index 
and/or the concepts presented in this paper or in any other respect. There is no obligation for Solactive AG - irrespective of 
possible obligations to issuers - to advise third parties, including investors and/or financial intermediaries, of any errors in an 
Index. This publication by Solactive AG is no recommendation for capital investment and does not contain any assurance or 
opinion of Solactive AG regarding a possible investment in a financial instrument based on any Index or the Index concept 
contained herein. The information in this document does not constitute tax, legal or investment advice and is not intended as a 
recommendation for buying or selling securities. The information and opinions contained in this document have been obtained 
from public sources believed to be reliable, but no representation or warranty, express or implied, is made that such information 
is accurate or complete and it should not be relied upon as such. Solactive AG and all other companies mentioned in this 
document will not be responsible for the consequences of reliance upon any opinion or statement contained herein or for any 
omission. 

All numbers are calculated by Solactive as of Q4 2017. 
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German Index Engineering 
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